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1 Introduction 

This is the final report on our work under ONR Contract N00014-86-K-0726, August 1, 1986 

through July 31, 1989. 

The major results are in two areas: 

1. Studies of systematic design procedures for a class of structured algorithms often encountered 

in signal processing applications. These are what we have called Regular Iterative Algorithms 

(RIAs) for which our results are summarized in Section 2. 

It might be mentioned that these ideas have been successfully used by one of our former 

students who helped to develop this theory, Dr. S. K. Rao of AT&T Bell Laboratories in 

Holmdel, N.J. Dr. Rao has found the RIA results helpful in designing several fast integrated 

circuit chips for communications and signal processing applications, some of which are being 

used in the AT&T - ZENITH joint effort on High Definition Television (HDTV). 

2. The other major area of effort was the study of a notable family of algorithms that are not in 

the RIA form, viz., those associated with Viterbi decoding of convolutional and trellis codes 

or more generally with shortest-path problems in graphs. 

This work, which is described in Section 3, is also being followed by Dr. P. G. Gulak, a 

postdoctoral scholar and research associate on the contract, who is now teaching at University 

of Toronto, Canada. Dr. Gulak is having special chips designed and built by Bell Northern 

Research. 

2 Summary of Our Work on Regular Iterative Algorithms 

Our previous work has shown that (see e.g. , [14, 15, 32, 33, 34, 35, 41]) that once a Regular 

Iterative Algorithm is designed for a given problem, then one can use the systematic design theory 

developed by us to generate efficient processor arrays. However, most algorithms are not given to 

the designer in the RIA form and most initial representations are either sequential in nature (e.g., 

FORTRAN or PASCAL programs) or general mathematical expressions. We have thus developed a 

formal methodology for systematic formulation of RIAs starting from representations that we refer  

to as linearly indexed Assignment Codes. It can be shown that such codes are very close to the I 

mathematical expressions of a wide variety of problems, especially in signal processing and matrix        0 

algebra. □ 
In this section, we shall first briefly introduce RIAs and summarize our contributions in the     

analysis and implementation of such algorithms. We shall then briefly summarize our formal 

methodology for deriving RIAs starting from general representations such as mathematical formu- 

las. 
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2.1    Regular Iterative Algorithms and Our Contributions 

A formal definition of RIAs can be found in [17, 35, 41]; here we shall introduce RIAs via a simple 

example. 

Example (2-D Filtering Algorithm): It can be shown (see [32,35]) that certain numerically 

stable 2-D filtering algorithms due to Deprettere and Dewilde [5], Vaidyanathan and Mitra [47], 

and Fettweis [6], can all be written in the form: 

For all (i,j,k),  where   0 < i < n and 0<j,k<N,  do 

x(i,j + l,k + 1) = fx,i(x(i,j,k),y(i,j,k),w(i,j,k)) 

y(i+l,j,k) = fy,i(x(i,j,k),y(i,j,k),w(i,j,k)) 

w(i - l,j,k) = fw,i(x(h j,k),w(i,j,k)) 

where /*,,-, fVti, /„,,; are linear functions that are determined by a synthesis procedure. 

D 

The example displays the following (characteristic) features of an RIA: 

Each variable in the RIA is identified by a label (e.g., x, y or w in example 1) and an index 

vector (e.g. , I = [i j k]T, in example 1). The set of all index points over which the variables 

of the RIA are defined is called the index space, which is a subset of the an 5-dimensional 

integer lattice, Zs. 

The dependences among the variables are regular with respect to the index points. That is, 

if xi(I) is computed using the value of x2(I - di2) then the index displacement vector d\2, 

corresponding to this direct dependence, is the same regardless of the index point I. 

The set of computations performed at every index point is often referred to as the iteration unit 

of the RIA. Also, note that although the direct dependences among the variables in an RIA are 

required to be independent of the index points, the actual computations carried out to evaluate 

these variables can depend on the index point. In general, the index space I will be semi-infinite 

along certain coordinates and bounded along others. The bounds on the coordinates will be referred 

to as the size parameters of the RIA. 

The regular dependences of an RIA lead to a dependence graph with an iterative structure, 

which can be clearly demonstrated by embedding the dependence graph within the index space. 

That is, a set of V nodes is defined at every index point I in the index space I, where the ith node 

represents the variable x,(7) in the RIA. As first noted by Karp et al. [17] and by Waite [50], the 

regularity of the dependence graph of an RIA can be concisely expressed in terms of a simpler and 

smaller graph called the Reduced Dependence Graph (RDG). The RDG of an RIA (see Fig. 1) has 

one node for each of the indexed variables in the RIA; it has a directed arc from node x; to node Xj, 
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Figure 1: The RDG of the RIA in the above example. 

if Xj(I) is computed using the value of x,(7- dy) for some dy; finally, each directed arc is assigned 

a vector weight representing the displacement of the index point across the direct dependence. We 

should note that the RDG and a specification of the index space I, completely characterize the 

dependence graph of an RIA; hence, the analysis of parallelism in an RIA is based on the analysis 

of the RDG instead of the larger dependence graph. 

Some of our important results are enumerated below; for a detailed account of the work reported 

here previous work please see [32, 41] 

1. A formal definition of systolic arrays was obtained that captured their generally accepted 

properties, especially regularity (mostly identical processors), spatial locality (local intercon- 

nections), temporal locality (no delay-free operations, or more precisely, all combinational 

elements are latched) and pipelined operation (throughput independent of the order, suitably 

defined, of the system). Some authors (e.g, Leiserson et al. [24]) had used only a subset 

of these properties, but the consensus in the literature appeared to have required all those 

mentioned above (see e.g., [34] and [21]). 

2. A reasonable generalization of the concept of systolic arrays that allowed implementation of a 

larger class of algorithms (including of course all systolic algorithms) was also developed. The 

generalization allowed the presence of register pipelines of various lengths at different points in 

a regular array of (mostly) identical processors, and sometimes also some LIFO (Last-In-First- 

Out) buffers. Such architectures have almost all the advantages that make systolic arrays so 

appealing for VLSI; the only added requirement is that some of the processors may require 



certain amount of memory in them. We should note here that the memory requirement is 

not a major bottleneck, and certain commercial products such as the WARP developed at 

CMU, routinely provide such on-processor memory. 

Rao et al. called such arrays Regular Iterative Arrays, and algorithms implementable on such 

arrays were dubbed as Regular Iterative Algorithms. It is convenient to use the acronym RIA 

to stand for either of these concepts, the exact one to be inferred from the context. Using 

the above concepts, and their consequences, one can show for example that there are Regular 

Iterative Algorithms (e.g. , RIAs for certain classes of 2-D filtering algorithms, RIAs for 

certain pivoting algorithms [41, 36, 37] etc.) that cannot be implemented on systolic arrays, 

as formally defined, but can be implemented on regular iterative arrays. 

3. It was also shown [15, 21, 32, 41] that many algorithms in digital filtering (convolution, 

correlation, autoregressive, and moving-average filtering), numerical linear algebra, discrete 

methods for PDEs and ODEs, graph theory (transitive closure, some coloring problems) 

can be reformulated as RIAs. Systematic procedures for converting algorithms into RIAs, 

however, remained as an open problem. 

4. For any RIA, formal methods to determine lower bounds on I/O latency and memory require- 

ments were developed; systematic procedures for implementing RIAs on regular processor ar- 

rays that can achieve the lower bound on I/O latency were also proposed (see [32, 33, 35, 41]). 

We should mention here that these formal mapping techniques can generate all possible archi- 

tectures, though in practice one stops once a few efficient (i.e. , meeting certain performance 

lower bounds) arrays have been obtained. 

5. In the design of systolic arrays, several issues such as systematic procedures for designing 

multi-rate systolic arrays were resolved. In the conventional systolic array designs all oper- 

ations were assumed to take the same amount of time; this led to unrealistic and inefficient 

design. Our design procedure allows one to carry out the design with more realistic processor 

modules that can increase the throughput by exploiting the fact that the time required to 

carry out different operations is generally different. 

2.2    Systematic Formulation of RIAs 

Let us first introduce the concept of localized algorithms that are close to RIAs (see e.g. , [41, 40, 39, 

16, 42]). The definition of the localized algorithms is motivated by the observation that there are 

certain problems that can be solved by algorithms that have regular dependence graphs that are not 

completely homogeneous. That is, the dependence graphs may have dependencies or computations 

that are present only in certain portions of the dependence graphs. As we shall discuss in [41], one 

way of handling such cases is to assume that the dependences and the computations are present 



everywhere in the index space and then to apply the results for RIAs. There are several problems 

where this approach is reasonable; for example the Gaussian elimination algorithm without pivoting 

can be first written in the localized algorithm form and then can be implemented on processor arrays 

by modeling the localized algorithm as an RIA. The other approach is to break up the dependence 

graph into more than one component such that the dependence graph is homogeneous over each 

component. The mapping techniques can then be applied to each such component with special 

consideration to the dependences at the boundaries between the components. The latter approach 

is discussed in more detail in [41] where the example of Gauss-Jordan elimination algorithm is 

worked out. 

The localized algorithms have statements of the form 

Xi(I) = fi(Xl(I- da), • • •, xv(I- diV))    V I G Ij. (1) 

Thus each statement in this algorithm may have a different index space of its own; as a comparison, 

all statements in an RIA have the same index space. 

Partial attempts have been made by several authors, including [18], [25], [20], [27], [4] and [10], to 

formalize the conversion procedure for going from an initial representation to an RIA or a localized 

algorithm. The first step always is to convert algorithms into equivalent Single Assignment Codes 

(SACs) and the second step tries to localize the dependences by eliminating broadcasts. Single 

assignment codes [2] are representations where every variable defined in the algorithm takes on a 

unique value during the course of execution. The fact that the dependence graph of an algorithm can 

be easily determined from its SAC, has made SACs a very useful starting representation for parallel 

implementations of algorithms. Considering its importance, a lot of work has been done in trying to 

convert sequential algorithms into SACs, see e.g., [26]. However, sequential algorithms are not the 

only representations from which SACs can be derived. Often SACs can be derived systematically 

from given mathematical expressions. Consider a mathematical expression for matrix multiplication 

For all   tuples (i,j), 1 < i,j < n do 

Cij := 5Z        aik-hj- (2) 
for all i<fc<n 

and a SAC 

For all   triples (i,j, k),    1 < i,j, k < n do 

c(i, j, k + 1) := c(t, j, k) + aik • bkj (3) 

In the mathematical expression, the ordering of operations in the inner product is not specified 

and in fact it can be arbitrary because of the commutativity and associativity of the operation +. 

However, in the given SAC the ordering is fixed and a degree of freedom has been lost. Since the 

original representation has more freedom and potential parallelism in it, it would be desirable to 



make it the starting representation and then systematically derive one or more SACs from it. It 

turns out that a number of algorithms can be written in the form of (2) (see [41, 40, 39]), and 

we shall refer to such representations as Assignment Codes (ACs). The prefix 'Single'has been 

intentionally dropped to emphasize the fact that in such representations the number of inputs for 

computing a variable may depend on the problem size, as opposed to a conventional SAC where the 

number of inputs to every variable is restricted to be some constant, independent of the problem 

size. From now on we shall refer to the number of inputs to a variable as its in-degree and the 

number of variables that a particular variable is input to as its out-degree. If the in- or out-degree 

of a variable depends on the problem size, then we shall define it to be unbounded. Thus, the 

variables in ACs can have unbounded in- and out-degrees, whereas in SACs the variables have 

bounded (i.e., constant) in-degrees but may have unbounded out-degrees. 

We shall further restrict ourselves to linearly indexed ACs, which can be shown to be very close 

to mathematical expressions for a number of problems, especially in signal processing and matrix 

algebra. A linearly indexed AC has statements of the form 

x(PI + d) depends on y{QI + e) for all I e I C Z5 (4) 

where P and Q are integral matrices independent of /, I is an index space which is the set of all 

lattice points enclosed within a specified region in a 5-dimensional Euclidean space and d, e are 

constant displacement vectors. P and Q are often referred to as the indexing matrices. We have 

shown in [41, 40, 39] that in- and out-degrees of variables x and y are completely determined by the 

structure and dimension of the right null-space of each of the indexing matrices. Many algorithms 

are actually directly available as (4), and examples include the formulas for matrix multiplication, 

any m-dimensional convolution/correlation, matrix transposition, and solving matrix Lyapunov's 

equation. Algorithms that are not directly in the form of (4) can often be easily put in that form 

by analyzing their sequential representations (see [41]). 

Example 2: The formula for matrix multiplication is: 

For all   tuples (i,j), 1 < i,j < n do 

Cij := 

for all i<fc<n 

The index space of the example is I = {(•,;,*) I 1 < •', j,* < n}. There is one functional relation 

in the given AC with the dependence matrices 

( 1 o o\ n      ( o i  o Q-=[o o ij Qfcc=lo 0 1 
and the displacement vectors d, e = 0. 

We have shown that a linearly indexed AC can be systematically decomposed into a linearly indexed 



SAC and a linearly indexed dual SAC. Linearly indexed dual SACs may have variables with un- 

bounded in-degrees but bounded out-degrees, as opposed to the linearly indexed SACs, which have 

variables with bounded in degrees but possibly unbounded out degrees. Formal procedures will be 

then outlined for converting linearly indexed SACs and linearly indexed dual SACs into localized 

algorithms. The conversion of linearly indexed SACs to localized algorithms involves eliminating 

global dependencies by propagating variables in a systematic manner in the index space. The 

conversion of dual SACs to localized algorithms is achieved by distributing computations and in- 

troducing an ordering among the computations. The two conversion procedures turn out to be 

duals of each other. We should mention here that starting with linearly indexed ACs is by no 

means essential in our approach; if one cannot find a AC easily, then one can try to use other 

well-known techniques and start the procedure with a linearly indexed SAC. 

In summary, we have developed a hierarchical procedure for going from a higher level represen- 

tation of an algorithm to a localized algorithm, which can be described by an RIA or a localized 

algorithm. It can be described as follows: 

Mathematical Description ->• Linearly Indexed Assignment Codes —► Linearly Indexed 

Single Assignment Codes and dual Single Assignment Codes -»• Localized Algorithms. 

The conversion procedure is by no means unique and a number of localized algorithms can be gen- 

erated starting from the same AC. To enable an efficient choice we have also developed procedures 

to directly schedule and analyze linearly indexed codes of the form (4). For example, we have 

developed necessary and sufficient conditions for determining whether a sequence of SACs of the 

form (4) can be scheduled using affine schedules (see [41, 16, 42]). Procedures to schedule linearly 

indexed codes that do not admit affine schedules are also discussed in [41]. 

3    Summary of Our Work on Parallel Architectures for Viterbi 

Decoders 

In this section we shall summarize our work on the development of parallel architectures for the 

optimal decoding of convolutional and trellis codes using the Viterbi Algorithm. 

The Viterbi Algorithm (VA) [48], [49], [9], which is widely used in communication systems using 

convolutional and trellis codes, is essentially an algorithm for finding a minimum distance path in a 

so-called trellis diagram. There have been several implementations of the VA ranging from totally 

sequential to fully parallel multiprocessor implementations based on the state transition diagrams 

of the encoders. By restricting ourselves to codes generated by linear systems over GF(g), we are 

able to present some apparently novel parallel architectures for decoding rate k/n linear codes, 

and asymptotically area-efficient implementations for the Thompson VLSI grid model. For k = 1, 



an equivalence mapping between de Bruijn graphs and shuffle-exchange networks is used to relate 

previously proposed architectures for decoding rate 1/n codes to the straight forward architectures 

based on the state transition graphs of their encoders. Although these architectures result fast 

implementation, they require global communication, Hence, we have also studied implementations 

that have only local communications and require less silicon area. 

In the rest of this summary we shall briefly describe our work and relate it to the work done by 

other researchers. 

3.1    The Viterbi Algorithm and its Parallel Implementations 

The basic theory behind the VA is readily available in the literature; a good survey was provided 

by Forney [9], who introduced the concept of the trellis exposition of the decoding algorithm. 

The trellis diagram, is a graphical representation of the state diagram of the encoder drawn as a 

function of discrete time. Fig. 3 shows the state transition and trellis diagrams for the binary rate 

1/2 convolutional encoder shown in Fig. 2. Each time step corresponds to a single symbol interval 

T (defined as the time interval between two consecutive output symbols of the receiving channels), 

and defines one stage of the trellis. Each node at every stage of the trellis diagram represents one 

possible state of the encoder. If q is the number of possible alphabets and v is the number of 

memory elements, then each stage of the trellis has qv nodes. There is an edge between the node 5/ 

(i.e., the node representing state 5,- at stage t) and the node 5j+1 if and only if there is a directed 

edge from state 5,- to Sj in the state transition diagram of the encoder. If there are k inputs to the 

encoder circuit then each state has qk predecessors; equivalently, the in-degree of every node in the 

trellis diagram is qk. 

Each edge (i.e., S\ -> 5j+1) is assigned a weight, called the branch-metric. The VA is a dynamic 

programming algorithm for finding a minimum-distance path in the weighted trellis diagram [28] 

and can be described as follows. Each node of the trellis diagram has a path metric and a survivor 

sequence associated with it. The path metric Pj of the node Sj at time t is the weighted length 

of a minimum-distance path between the starting node S° and the node Sj in the trellis diagram; 

the survivor sequence Ql- for state Sj at time t is the state sequence associated with this minimum- 

distance path. Once every symbol interval, the path metrics are updated as follows: 

Pj+1 = mm(P! + Xlf1)   V i such that Si - Sj (5) 

where Pß and 5,- -* Sj implies that there is a valid state transition from state Si to Sj. The 

old survivor sequence of the winning ancestor is augmented with the symbol corresponding to the 

transition to state Sj to form the new survivor sequence for the state Sj. After a sufficiently 

long time X, (see e.g. [49]) the survivor sequence of the state with the minimum path metric is 

chosen to be the estimate for the state sequence of the encoder; the decoding procedure is then 



completed by determining the input sequence corresponding to the estimated state sequence. [In 

actual implementations, many practical issues must be accommodated such as truncation of the 

survivor sequence, extraction of the estimated source symbols, and path metric overflow control in 

finite-word length registers.] 

Thus, at each node of the trellis diagram, the VA has to perform qk additions and compar- 

isons (one for each predecessor) to update the path metrics and survivor sequences; hence, the 

total number of operations to be executed during a symbol interval is 0(qv+k) l. A sequential 

implementation would require qv+k addition and comparison operations and qv random accesses 

to the processor's memory during each symbol interval T. Hence, the throughput rate of such 

an implementation decreases exponentially with increase in the constraint length and may not be 

acceptable in applications where high data rates are required. 

One can however trade time for hardware and implement the VA in parallel with increased 

hardware complexity but reduced T (hence, higher data rates). An intuitively obvious architecture 

can be obtained by projecting the trellis diagram along the time direction and implementing the 

VA on the resulting architecture, which will consist of a set of qv processors connected according to 

the state transition diagram of the encoder. We shall refer to this architecture as the fully parallel 

architecture for implementing the VA. At every time step, each processor performs the operations 

represented by (5), i.e. , it receives the output symbol and generates the branch metrics for each of 

its predecessor; then it has to perform qk additions and select the minimum among them followed 

by updating of the survivor sequence. Hence, for a rate k/n encoder the symbol interval T is 0(qk) 

and a gain of 0(qv) over a sequential processor has been achieved. 

3.1.1    Previous Work 

Kriete and Cain [1] used a fully parallel architecture (along with several tricks in order to keep the 

path metrics small) to implement the VA for a rate 1/2 feedforward encoder with constraint length 

v = 7 in VLSI (Very Large Scale Integrated) circuit technology. However, they did not address 

issues such as area-efficient implementations of Viterbi decoders for arbitrary constraint length, 

or alternate parallel architectures that may be simpler than the architectures based on the state 

diagrams. Lower silicon area enables the designer to put more processors on a single chip and yet 

have a high yield; it also may lead to higher speed by reducing the length of interconnecting wires. 

And of course, if the decoder architecture is large compared to the available resources, then one 

requires efficient strategies for executing the larger sized problem on the available resources. 

Gulak and Shwedyk [12], [11] showed that by carefully analyzing the trellis diagram one can 

1A quantity /(TV) is said to be 0(g(N)) if there exists it > 0 such that f(N) < kg(N) for sufficiently large N. It 

is U(g(N)) if for some *i > 0, f(N) > kig(N) for sufficiently large N. Finally, f(N) is 0{g{N)) if it is both 0(g(N)) 

and V(g(N)). 



map the VA algorithm for the special case of rate 1/n FIR encoders onto well-known architectures 

for parallel processing called shuffle-exchange networks [44], [46]. Optimum VLSI layouts are 

already known [19], [22], [45], [13] for such networks and hence the same layouts can be used 

for Viterbi decoders. Moreover, it is well-known that shuffle-exchange networks are functionally 

equivalent to a whole family of other popular networks such as hypercubes, cube-connected cycles, 

butterflies, omega networks, etc., [30], [46]; thus the VA for rate 1/n FIR encoders can be efficiently 

implemented on any of these architectures; however, among these architectures, the shuffle-exchange 

networks have the least VLSI area for the same number of nodes. We should also comment that, 

with hindsight, the relationship between trellis diagrams of rate 1/n FIR encoders and shuffle- 

exchange networks should come as no surprise. As early as 1973, Forney [9] and then Rader [31] 

had noted the equivalence between the trellis diagrams of rate 1/n feedforward encoders and the 

dependence graphs of FFT algorithms and the fact that FFTs can be efficiently implemented on 

shuffle-exchange networks had been well-known even before that [44]. However, in our work we 

have presented a much more direct connection between the trellis diagram and the shuffle exchange 

networks by pointing out a simple procedure for mapping the state transition graphs (which are 

known as de Bruijn graphs or Good's diagrams) to the shuffle exchange graphs. 

A different family of parallel implementations was presented by Chang and Yao [3]. They 

interpreted the VA (both for rate 1/n and rate k/n feed-forward convolutional encoders) as a 

sequence of matrix-vector multiplications (where the usual + operation is replaced by the min 

operation and the usual multiplication operation is replaced by addition) and then implemented the 

VA using systolic architectures already developed in the literature for matrix-vector multiplication. 

The implementation uses 0(qv) processors; however, the symbol interval T is at best 0(qv/v) 

and thus the gain in speed over that of the sequential processor is at most qv. Hence, with an 

exponential number of processors, the gain achieved in throughput rate is at best logarithmic. 

3.1.2    Our Contributions 

Let us first consider the fully parallel architectures where several questions remain unanswered in 

this area. In particular, rate k/n convolutional codes (k > 1) have better distance properties and 

lower error probabilities than rate 1/n codes [49] and are widely used in practice. However, fully 

parallel architectures for decoding rate k/n codes based on the state transition diagrams become 

complicated and no alternative simpler architectures or area-efficient VLSI implementations seem 

to have been described in the literature. 

In our work we observed that the state transition diagram of any rate 1/n feedforward encoder, 

which is a de Bruijn graph (also referred to as a Good's diagram), can be directly mapped to a 

shuffle-exchange network. The simple mapping technique has been independently discovered by 

several researchers [23], [29], [38], and can be used to show that optimal VLSI layouts for de Bruijn 

10 



graphs can be obtained by suitably modifying the optimal layouts of shuffle-exchange networks. 

The resulting layouts of N nodes de Bruijn graphs have area of 0(N2/ log2 N) and are only a 

constant factor larger than the layouts of the corresponding shuffle-exchange networks. There 

may be, however, advantages in implementing de Bruijn networks because unlike shuffle-exchange 

networks, they are fault tolerant and work efficiently in the presence of a single faulty node or link 

[43]. We also show that the state diagrams of rate 1/n encoders with feedback when realized in a 

certain canonical form still have the structure of de Bruijn graphs; hence, the decoder architectures 

for feedforward encoders can be used to decode codes generated by encoders with feedback. 

For rate k/n feedforward encoders realized in an 'obvious' manner, we have shown that the state 

diagrams can be represented as Cartesian products of &, possibly distinct, de Bruijn graphs. The 

resulting product graph representation is much simpler than the original state transition diagram 

and architectures based on the representation does not suffer any loss in performance. Minimum 

area VLSI layouts for the product graphs are presented using a recursive layout technique that 

uses the optimal layout strategy for de Bruijn networks. Also, we prove that the optimal layouts 

of the product graphs save at least a factor of 0(qk) in silicon area compared to the direct layouts 

of the state transition diagrams. It is also shown that under certain conditions one may choose to 

implement syndrome decoding based on the state diagram of the dual encoder. The dual encoders 

are always feedforward [7], [8] and may have simpler state diagrams (if k > n/2) than the original 

encoder. 

For the general case of rate k/n encoders with feedback, one can use a result of Forney [7] that 

every rate k/n convolutional code can be regarded as having been generated by a minimal encoder, 

which is necessarily feedforward and has minimum constraint length. Hence, any rate k/n code 

can be decoded by a decoder based on the state transition diagram of a corresponding feedforward 

minimal encoder, with the resulting codeword converted to the encoder input by a trivial linear 

operation. Thus in general, the VA for any rate k/n encoder can be always implemented in parallel 

on a set of processors connected according to a Cartesian product of de Bruijn graphs. 

The fully parallel architectures, discussed above, are fast, but require global communications and 

large silicon area. Hence, with Dr. P. G. Gulak, a postdoctoral scholar and later a research associate, 

we have also studied implementations that have only local communications and require less silicon 

area. The study of such implementations have led us to the design of so-called cascade architectures 

that can be shown to have the best (area) x (pipeline-period) product. A paper on this and related 

architectures has been published. [ P. G. Gulak and Thomas Kailath, "Locally Connected VLSI 

Architectures for The Viterbi Algorithm", Journal on Selected Areas in Communication, 6, pp. 

527-537 April 1988. ] 

11 



3.2    VLSI Implementation 

In the past year, considerable effort has been put in by Dr. P. G. Gulak into utilizing theoretical 

insights generated by our work to obtain VLSI implementations for Viterbi decoders. The project 

is a rather long one and Dr. Gulak has been continuing it at University of Toronto, Canada, where 

he is an Assistant Professor. An experimental VLSI implementation of a soft-decision, binary rate 

1/2, constraint length three, convolutional decoder in 3 /xm CMOS technology has been carried 

out. It has been submitted to Bell Northern Research (BNR) for fabrication and a set of chips is 

expected to be tested by the end of this year. A brief description of the chip is presented below. 

The architecture is based on a number of simple processors, each performing an Add-Compare- 

Select (ACS) operation, and connected according to the state transition graph of the encoder, 

which is a de Bruijn graph for rate 1/n codes. For our experimental design, the decoder has four 

processors (each processor corresponds to one state of the rate 1/2, constraint length three encoder) 

as shown in Fig. 4. Two entries, namely a path (or state) metric and a survivor sequence, are stored 

at each node. The survivor sequence, represents the earlier symbols which led to the presumed 

present state, through valid state transitions. The state metric is the weight associated with the 

survivor sequence. Once each symbol interval, state metrics are updated by adding a measure of 

unlikelihood, called a branch metric, defined by valid state transitions from each possible state into 

a given present state. The lowest resulting sum defines the new state metric for the given present 

state. The old survivor sequence in the survivor path of the winning ancestor, is appended with the 

symbol corresponding to the transition to this state, to form the new survivor path for this state. 

During a preliminary layout to find the approximate size and shape of the various cells in the 

3 urn CMOS, a four processor Viterbi decoder was determined to have 4mm square die. Various 

other design parameters were decided through Monte-Carlo simulations. For example, simulations 

demonstrated that for relatively high signal-to-noise ratios, a 6-bit survivor sequence allowed the 

sequences to merge before the delayed estimates were generated. A soft decision scheme was 

adopted and again the simulations showed that it was sufficient to maintain state metrics to 4-bit 

resolution. It was also decided to generate the branch metrics off-chip and use 8 four-pin ports to 

bring them on-chip. Although this meant that 32-pins of a 40 pin package would be used, it allows 

for the flexibility of using an external look-up ROM so changes in the branch metric are facilitated. 

Besides the branch metrics, four additional connections are made to the chip, namely, one each for 

power and ground, one for the system clock and one for the estimated output sequence for a total 

of 36 pins. The VLSI layout is presented in Fig. 5. 

The operation of the chip is as follows. As shown in Fig. 4, there are two transitions into each 

state or processor. Thus each processor receives the two corresponding state metrics from the buses 

that cross the center of the chip (see Fig. 5). Meanwhile, the off chip hardware uses observations of 

the received symbol to look up a ROM table and generate branch metrics for both the transitions 
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into that state. These four-bit values arrive via busses from outside. The state metric and the 

branch metric are added together in separate 4 by 6-bit ripple carry adders for each of the two 

input paths. The two sums are compared by a 6-bit comparator and a select signal is generated, 

indicating which sum is lower. While these operations are in progress, the survivor sequences are 

delivered to the appropriate processing elements. The 6-bit survivor sequence, selected by the above 

comparison is saved in a D-type latch on the rising edge of the clock. The select line then gets the 

proper state metric into the normalizer. Only if all four of the processors select state metrics with 

values greater than 15, will each of the processors normalize its metric by subtracting 16 from it. 

This prevents wrap-around overflow while involving only the upper two bits. On the falling edge 

of the clock, the 6-bit state metric is latched, thus replacing the information from the previous 

symbol interval. The oldest bit of the survivor sequence is the estimate of the received symbol. All 

other bits in the survivor sequence register are shifted over by one position and the newest bit is 

appended to indicate the next trellis decision in the path history. The procedure then repeats with 

the next received symbol. 
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Figure 2: A binary rate 1/2 convolutional encoder with constraint length 2. 
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Figure 3: The trellis diagram and the state transition diagram of the encoder in Fig. 1 

18 



1 i    r 
X(A)  X(B) X(H) 

Figure 4: A fully parallel Viterbi decoder. 

19 



»■OKWJW^W'H 

l-mjfmm^'^^»* 

Figure 5: VLSI layout. 

20 



a) Papers Submitted to Refereed Journals (and not yet published) 

1. V. P. Roychowdhury and T. Kailath, "Subspäce Scheduling and Parallel Imple- 
mentation of Non-Systolic Regular Iterative Algorithms," Journal of VLSI Signal 
Processing. 

2. T. Varvarigou, V. P. Roychowdhury and T. Kailath, "Some New Algorithms for 
Reconfiguring VLSI/WSI Arrays," IEEE domputer Society Conference, Jan. 
1990. ! 

3. V. P. Roychowdhury, J. Brück and T. Kailath, "Efficient Algorithms for 
Reconfiguration in VLSI/WSI Arrays," IEEE Trans. Computers. 

4. V. P. Roychowdhury, L. Thiele, S. K.Rao and T. Kailath, "On the Localization 
of Algorithms for VLSI Processor Arrays," IEEE Trans. Computers. 

5. V. P. Roychowdhury, P. G. Gulak, A. Montalvo and T. Kailath, "Decoding of 
Convolutional Codes in VLSI," IEEE Trans, on Inform. Thy.. 

6. V. P. Roychowdhury and T. Kailath, "Regular Processor Arrays for Matrix Algo- 
rithms with Pivoting," Communications of ACM. 

b) Contributed Presentations at Topical or Scientific/Technical Conferences 

7. T. Kailath, "VLSI Array Processors for Communications, Control and Signal Pro- 
cessing," TENCON 87, pp. 96-98, Seoul, Korea, August 25-28, 1987. 

8. P. G. Gulak, T. Kailath, A. Montalvo and V. P. Roychowdhury, "Decoding of 
Rate K/N Convolutional Codes in VLSI," Dayton Conference on Systems 
Engineering, Dayton, OH, September 1987. 

9. V. P. Roychowdhury and T. Kailath, "Regular Processor Arrays for Matrix Algo- 
rithms with Pivoting," Inter'I. Conference on Systolic Arrays, San Diego, CA, 
May 1988. 

10. V. P. Roychowdhury, P. G. Gulak, A. Montalvo, and T. Kailath, "Decoding of 
Rate kin Convolutional Codes in VLSI," 7957 Princeton Workshop on Algo- 
rithms, Architectures and Technology Issues for Models of Concurrent Computa- 
tion, N.J., September 1987. Reprinted in Concurrent Computations: Algorithms, 
Architecture and Technology, Chapter 33, eds. S.K. Tewksbury, B. W. Dickinson 
and S. C. Schwartz, Plenum Press, N.Y., July 1988. 

11. V. P. Roychowdhury, S. K. Rao, L. Thiele and T. Kailath, "On the Localization 
of Algorithms for VLSI Processor Arrays", 1988 IEEE Workshop on VLSI Sig- 
nal Processing, pp. 459-470, Monterey, CA, November 1988. 

12. T. Kailath and V. P. Roychowdhury, "Scheduling Linearly Indexed Assignment 
Code," Proc. SPIE, pp. 118-129, Los Angeles, CA, January 1989. 

c) Books and sections thereof) Published: 

1. V. P. Roychowdhury, P. G. Gulak, A. Montalvo, and T. Kailath, "Decoding of 
Rate   k/n   Convolutional   Codes   in   VLSI,"   1987  Princeton   Workshop   on 

21 



Algorithms, Architectures and Technology Issues for Models of Concurrent Com- 
putation, N.J., September 1987. Reprinted in Concurrent Computations: Algo- 
rithms, Architecture and Technology, Chapter 33, eds. S.K. Tewksbury, B. W. 
Dickinson and S. C. Schwartz, Plenum Press, N.Y., July 1988. 

d) Honors/A wards/Prizes 

1. Engineering Achievement Award, National Federation of Asian Indian Organiza- 
tions in America, 1986. 

2. 1987 International Federation of Automatic Control Citation for Outstanding Con- 
tribution, J. M. Jover and T. Kailath, "A Parallel Architecture for Kaiman Filter 
Measurement Update and Parameter Estimation," Automatica, Vol. 22, no. 1, pp. 
43-57, 1986. 

3. Hitachi America Professorship of Engineering, Jan. 1988. 
4. 1988 Electrical Engineering Department Distinguished Service Award, June 1988. 
5. Centennial Lecturer, American Math Society of Industrial and Applied Mathemat- 

ics, July 1988. 
6. 1989 Technical Achievement Award of the IEEE Acoustics, Speech and Signal 

Processing Society. 
7. Royal Society Guest Research Fellowship, Imperial College of Science, Technol- 

ogy and Medicine, Department of Electrical Engineering, London, England, Sum- 
mer 1989. 

e) Special/Invited Conference Lectures 

Plenary Lecture, Symposium on the Fortieth Anniversary of the Joint Services 
Electronics Program, Washington, D.C., September 25, 1986. 
Plenary Lecture, Platinum Jubilee Conference on Systems and Signal Processing, 
Indian Institute of Science, India, December 11-13, 1986. 
Lecturer, IEEE Course on Array Signal Processing, Osmania University, Hydera- 
bad, India, December 14-15, 1986. 
Plenary Lecture, White House Review of SDI Innovative Science and Technology 
Program, Washington, D.C., January 7, 1987. 
Lecturer, American Mathematical Society, 39th Annual Meeting, Short Course, 
Moments in Mathematics, San Antonio, TX, January 20-22, 1987. 
One-Day Presentation to Hughes Research Panel, "New Methods for Direction 
Finding and Spectral Algorithm - ESPRIT," Los Angeles, CA, May 1, 1987. 
Plenary Lecture, IST/SDIO Workshop on Fundamental Issues in Communication, 
Computing and Signal Processing, MD, July 13-15, 1987. 
One-Day Presentation to JASON Group, "New Methods for Direction Finding," 
La Jolla, CA, July 16, 1987. 

90 



Plenary Lecture, 1987 IEEE Region 10 Conference (TENCON) on Computers and 
Communications Technology Toward 2000, Seoul, Korea, August 25-26, 1987. 
Plenary Lecture, International Conference on' Linear Algebra and Applications, 
Valencia, Spain, September 12-16, 1987. 
Keynote Lecture, 1988 Indo-US Workshop on Systems and Signal Processing, 
Bangalore, India, January 8-13, 1988. 
Plenary Lecture, 3rd SLAM Conference on Applied Linear Algebra, Madison, WI, 
May 23-27, 1988. 
Keynote Lecture, Sixth Army Conference on Applied Mathematics and Comput- 
ing, Boulder, CO, May 31 - June 3, 1988. 
Plenary Lectures, Summer Program on Signal Processing, Institute of Math and 
Its Applications, Minneapolis, MN, June 1988. 
Lecturer, SDIO Innovative Science and Technology Annual Information Process- 
ing Symposia, Arlington, VA, June 1988. 
Centennial Lecture, American Math Society, Society of Industrial and Applied 
Math, Minneapolis, MN, July 14, 1988. 
Keynote Lecture, NATO Advanced Study Institute on Linear Algebra, Digital 
Signal Processing and Parallel Algorithms, Leuven, Belgium, August 1-12, 1988. 
Plenary Lecture, International Conference on Operator Theory: Advances and 
Applications, University of Calgary, Alberta, Canada, August 21-26, 1988. 
SDIO/IST Workshop on Sensor Signal Processing, Washington, D.C., April 24- 
27, 1989. 
Symposium on Applied Mathematics and Scientific Computing, Computer Science 
Department, Stanford University, April 21, 1989. 
School of Engineering High Noon, High Tech Lecture, April 28, 1989. 
Special Lecture Series, Imperial College of Science Technology and Medicine, 
Department of Electrical Engineering, London, England, Summer 1989. 
Plenary Lecture, International Symposium on the Mathematical Theory of Net- 
works and Systems (MTNS-89), Amsterdam, The Netherlands, June 22, 1989. 
Keynote Lecture, International Symposium on Systems Engineering, Wright State 
University, Dayton, OH, August 23, 1989. 

f) Conferences Attended 

1) SPIE 30th Annual Technical Symposium, San Diego, CA, August 18-21, 1986. 
2) NSF Workshop on Future Directions of Research in System Theory and Applica- 

tions, Santa Clara, CA, September 18-20, 1986. 
3) 1986  USC  Workshop  on  VLSI  and  Signal  Processing,  Los  Angeles,  CA, 

November 5, 1986. 
4) 20th Annual Asilomar Conference on Circuits and Systems, Monterey, CA, 

November 10-12, 1986. 

23 



5) Platinum Jubilee Conference on Systems and Signal Processing, Indian Institute 
of Science, India, December 11-13, 1986. 

6) International Conference on Acoustics, Speech' and Signal Processing, Dallas, TX, 
April 6-9, 1987. 

7) 3rd Joint USSR - Swedish International Workshop on Information Theory, Sochi, 
USSR, May 22 - June 3, 1987. 

8) Operator Theory Workshop, Phoenix, AR, Jun^ 10-12, 1987. 
9) International Symposium on Mathematical Theory of Networks and Systems, 

Phoenix, AR, June 15-17, 1987. 
10) IEEE Region 10 Conference on Computers and Communications Technology 

Toward 2000, Seoul, Korea, August 25-26, 1987. 
11) International Conference on Linear Algebra and Applications, Valencia, Spain, 

September 1988. 
12) 21st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 

CA, November 1988. 
13) 26th Conference on Decision and Control, Los Angeles, CA, December 1987. 
14) Indo-US Workshop on Systems and Signal Processing, Bangalore, India, January 

1988. 
15) 1988 IEEE Communication Theory Workshop, Sedona, AZ, April 1988. 
16) International Conference on Acoustics, Speech and Signal Processing, New York, 

April 1988. 
17) SIAM Conference on Applied Linear Algebra, Madison, WI, May 1988. 
18) Systolic Arrays Conference, San Diego, CA, May 1988. 
19) Sixth Army Conference on Applied Mathematics and Computing, Boulder, CO, 

May 1988. 
20) SIAM Annual Meeting, Minneapolis, MN, July 1988. 
21) Institute of Math and Its Application, Summer Program on Signal Processing, 

Minneapolis, MN, June-July 1988. 
22) SDIO Innovative Science and Technology Annual Information Processing Sympo- 

sia, Arlington, VA, June 1988. 
23) NATO Advanced Study Institute, Leuven, Belgium, August 1-7, 1988. 
24) International   Conference   on   Operator  Theory:   Advances   and  Applications, 

University of Calgary, Alberta, Canada, August 1988. 

24 



g) Researchers 

Dr. A. Dembo (Research Associate, 1988U989) 
Dr. P. G. Gulak (Research Associate 1987) 
Dr. H. Lev-Ari (Senior Research Associate, 1987-1988)) 
Dr. N. Weyland (Visiting Scholar, 1986-^987) 
R. Ackner (Research Assistant, 1986-1987) 
A. Montalvo (Research Assistant, 1986-1988) 
K-Y. Siu (Research Assistant, 1988-1988) 
V. Roychowdhury (Research Assistant/Postdoctoral Scholar, 1989) 

h) Thesis 

1. V. Roychowdhury, "Derivation, Extensions and Parallel Implementation of 
Regular Iterative Algorithms," Stanford University, Department of Electrical 
Engineering, December 1988. 

25 


